python ml polynomial regression
Polynomial Regression
If your data points clearly will not fit a linear regression (a straight line
through all data points), it might be ideal for polynomial regression.
Polynomial regression, like linear regression, uses the relationship between the
variables x and y to find the best way to draw a line through the data points.
How Does it Work?
Python has methods for finding a relationship between data-points and to draw
a line of polynomial regression. We will show you how to use these methods
instead of going through the mathematic formula.
In the example below, we have registered 18 cars as they were passing a
certain tollbooth.
We have registered the car's speed, and the time of day (hour) the passing
occurred.
The x-axis represents the hours of the day and the y-axis represents the
speed:
Example
Start by drawing a scatter plot:
import matplotlib.pyplot as pltx = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]
plt.scatter(x, y)plt.show()
Result:
Run example »
Example
Start by drawing a scatter plot:
Result:
Example
Import numpy and
matplotlib then draw the line of
Polynomial Regression:
import numpyimport matplotlib.pyplot as pltx = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]y =
[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))myline = numpy.linspace(1, 22, 100)plt.scatter(x, y)plt.plot(myline, mymodel(myline))
plt.show()
Result:
Run example »
Example
Import numpy and
matplotlib then draw the line of
Polynomial Regression:
Result:
Example Explained
Import the modules you need.
You can learn about the NumPy module in our NumPy Tutorial.
You can learn about the SciPy module in our SciPy Tutorial.
import numpyimport matplotlib.pyplot as plt
Create the arrays that represent the values of the x and y axis:
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]y =
[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]
NumPy has a method that lets us make a polynomial model:
mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))
Then specify how the line will display, we start at position 1, and end at
position 22:
myline = numpy.linspace(1, 22, 100)
Draw the original scatter plot:
plt.scatter(x, y)
Draw the line of polynomial regression:
plt.plot(myline, mymodel(myline))
Display the diagram:
plt.show()
R-Squared
It is important to know how well the relationship between the values of the
x- and y-axis is, if there are no relationship the
polynomial
regression can not be used to predict anything.
The relationship is measured with a value called the r-squared.
The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1
means 100% related.
Python and the Sklearn module will compute this value for you, all you have to
do is feed it with the x and y arrays:
Example
How well does my data fit in a polynomial regression?
import numpyfrom sklearn.metrics import r2_scorex =
[1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]y =
[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))print(r2_score(y, mymodel(x)))
Try if Yourself »
Example
How well does my data fit in a polynomial regression?
Note: The result 0.94 shows that there is a very good relationship,
and we can use polynomial regression in future
predictions.
Predict Future Values
Now we can use the information we have gathered to predict future values.
Example: Let us try to predict the speed of a car that passes the tollbooth
at around 17 P.M:
To do so, we need the same mymodel array
from the example above:
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))
Example
Predict the speed of a car passing at 17 P.M:
import numpyfrom sklearn.metrics import r2_scorex =
[1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]y =
[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))speed = mymodel(17)print(speed)
Run example »
Example
Predict the speed of a car passing at 17 P.M:
The example predicted a speed to be 88.87, which we also could read from the diagram:
Bad Fit?
Let us create an example where polynomial regression would not be the best method
to predict future values.
Example
These values for the x- and y-axis should result in a very bad fit for
polynomial
regression:
import numpyimport matplotlib.pyplot as pltx =
[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]y =
[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))myline = numpy.linspace(2, 95, 100)
plt.scatter(x, y)plt.plot(myline, mymodel(myline))plt.show()
Result:
Run example »
Example
These values for the x- and y-axis should result in a very bad fit for
polynomial
regression:
Result:
And the r-squared value?
Example
You should get a very low r-squared value.
import numpyfrom sklearn.metrics import r2_scorex =
[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]y =
[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]mymodel =
numpy.poly1d(numpy.polyfit(x, y, 3))print(r2_score(y, mymodel(x)))
Try if Yourself »
Example
You should get a very low r-squared value.
The result: 0.00995 indicates a very bad relationship, and tells us that this data set is not suitable for polynomial regression.